JUMPINGं ROPE
 STEAM Activity

The calculation itself is fairly straightforward, but it's complicated if the angular velocity (i.e. the change in angular position per unit time) is expressed in a non-standard form like revolutions per minute (RPM). However, converting RPM to speed is still easy enough after you convert the RPM to a more standard measure of angular velocity.

Vocabulary:

RPM: a measure of the number of complete revolutions in a minute.
Angular velocity: measures this velocity of rotation or revolution.
Linear Speed: the measure of the concrete distance travelled by a moving object. The speed with which an object moves in the linear path is termed linear speed. In other words, it is the distance covered by a linear path in the given time.
Radius: The radius of a circle is defined as a line segment that joins the center to the boundary of a circle. The length of the radius remains the same from the center to any point on the circumference of the circle. The radius is half the length of the diameter.

American Heart Association.

Calculating Speed

Student Name: \qquad Teacher: \qquad Date: \qquad

Activity:

1. With a small group or a partner and a stopwatch, have your partner time you while you jump rope for one minute. As you jump, you should count how many jumps you do. When one minute is up, the person timing you should tell you to stop. If you "mess up" within the minute do not stop, but continue timing, jumping rope and counting the jumps. For example, if after 10 successful jumps, the rope hits your foot and you have to restart, the counter should count the next successful jump as number 11.
2. Write down the number of jumps you got in one minute below after '\# of jumps'.
3. Next, lay your jump rope down on the ground to make a circle, as shown. Measure the radius, from the center to the perimeter, of the circle in meters.
4. Now you have everything you need to calculate the speed of your jump rope in miles per hour (mph)! Complete the math in the worksheet.

RPM Formula:

RPM = number of revolutions / time in minutes

\# of jumps = \qquad / 1 minute = \qquad RPM

Calculating Speed

Student Name: \qquad Teacher: \qquad Date: \qquad

RPMs to Angular Velocity:

Angular Velocity (ω) is the angular change in position of an object per second, measured in radians per second. Most situations in physics will use angular velocity (ω) instead of RPM.

Angular velocity $(\omega)=$ RPM / 60 seconds $\times 2 \pi$
First, convert from per minute to per second, then convert the number of revolutions to a value in radians. The formula you need is:
$\omega=$ \qquad $R P M / 60$ seconds $\times(2 \times \pi)=$ \qquad rad/s
$\operatorname{Pi} \pi=3.14$
$\omega=\frac{\mathrm{RPM}}{60 \text { second } / \text { minute }} \times 2 \pi \mathrm{rad} / \mathrm{rev}$

Angular Velocity to Speed:

From this point onward, the conversion from RPM to linear speed is straightforward.
The formula you need is:
Speed is $v=\omega r$
Where ω is the angular velocity you calculated in the previous step, and r is the radius of the circular path for the motion, and you multiply these together to find the linear speed.

Radius of your jump rope $=$ \qquad cm

100 cm = 1 meter
Radius of your jump rope \qquad meters
$\mathrm{V}=$ \qquad $\mathrm{rad} / \mathrm{s} x$ \qquad meters $=$ \qquad $\mathrm{m} /$ second

Convert to miles per hour (mph) by using the formula: \qquad $\mathrm{m} /$ second $\times 2.23=$ \qquad mph!

